1. トップ
  2. 語り合う
  3. 脳と言語を情報の観点から比べる

進化研究を覗く

顧問の西川伸一を中心に館員が、今進化研究がどのようにおこなわれているかを紹介していきます。進化研究とは何をすることなのか? 歴史的背景も含めお話しします。

バックナンバー

脳と言語を情報の観点から比べる

2017年10月16日

前回DNAなど核酸と言語について、情報媒体としての観点から比較して、それぞれはあらゆる情報を表象することができるものの、言語を媒体として使う時に必要な「音」がDNAと比べた時、物理性に乏しいことを強調した。もちろん音も物理現象で、物理現象だからこそ情報を媒介できる。誤解を招かないためには、本当は音が物理性に乏しいという代わりに、音が持続性に乏しいといったほうがよかった。しかし、DNAが生物の情報媒体として誕生して以来、新しく進化してきた情報媒体はほとんど持続性に欠ける媒体で、決して世代を超えて情報を伝えることはできなかった。その最たるものが、情報の媒体としての脳の神経回路だ。事実、ある時自分が見たり考えたりしたことを覚えておくのは難しいし、ましてや他人や子孫に伝えることはもっと難しい。脳の神経回路を媒体とする情報の延長上に発展してきた言語が持続性に欠けるのは当然と言っていい。そこで今回から2回に分けて、情報媒体としての神経回路を言語を念頭に整理し直して、言語が神経回路を媒体にした情報処理システムに何を新たにもたらしたのか考えていきたい。

本題に入る前に、情報と情報媒体にまつわる混乱を整理する意味で、「言語は媒体か?情報か?」について少しだけ考えてみよう。言語は私たちが感じたり、考えたりした内容(=情報)を表現するための媒体として利用されている。ただ、情報を表現するためにはどうしても、単語やさらに小さな単位の音節を一定の法則(文法)に従って並べる必要がある。この音節(単語)の並びに情報性が生まれるのは当然で、並びを正確に伝達する方法の開発が、シャノンの情報科学が生まれる発端となった。同じことは、DNAにも言える。DNA自体は情報媒体だが、一本のDNA鎖は異なる領域に分節され、それぞれの分節は4塩基の配列として表現されている。従って当然配列自体が情報性を持つ。このように情報媒体は情報を背負った途端にそれ自身が情報になる。これが情報と、情報媒体の区別についての混乱の原因になるので注意が必要だ。ただ、音の並びや、DNAの並びを情報として捉えて混乱させているのは、わたしたち人間自身で、実際には言語も、DNAも情報媒体以外の何物でもない。

本題に移ろう。脳については、神経細胞の進化過程から人間に特有な高次機能まで、何回にもわたってその情報処理の仕組みについて説明してきた。これまで議論した詳細については理解していただいていると思うが、おさらいをかねて、まず私たち人間の脳について、情報媒体という観点から整理してみよう。

さて今年のノーベル賞は概日周期のメカニズムを発見した3研究者に与えられたが、情報とは何かを考える良い材料になるので、概日リズムの話から始めよう。

図1:ノーベル財団の今年の医学生理学賞の受賞理由に掲載されている図。
(https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html) (C) The Nobel Assembly at Karolinska Institute

「DNAは情報媒体として、概日リズム、すなわち地球の自転情報をコードしている」というと、驚かれるかもしれない。図1はノーベル財団から発表された受賞理由に掲載されていた図だが、概日リズムのメカニズムを説明している。しかし目を凝らしても、この図には地球の自転を感知する仕組みは一切見当たらない。それもそのはず、私たちの体にある一つ一つの細胞が概日周期を持っており、これが全てゲノムにコードされていることを明らかにしたことが今回のノーベル賞の受賞理由だ。この細胞レベルの概日周期も、視覚を通して感じた地球の自転情報で調整し直すことが可能だが、細胞の概日リズムの維持に光を感じることは必須ではない。これは、体から分離した培養細胞を真っ暗な部屋で培養しても、リズムは維持されることからわかる。このリズムは、生物進化の過程で、地球の自転という情報がDNAを媒体とした情報としてゲノム上に書き込まれた結果だ。

このことから、地球の自転のような宇宙レベルの情報ですらDNAを媒体とした情報へと書き換えられること、すなわちDNAがほぼ無限の情報を媒介できることがわかる。ただ、DNAに地球の自転情報を書き込むためには、偶然によるDNAにコードされた情報の変化と、変異した情報から生まれる形質の変化を選択し、最も外界にフィットした情報を固定化する途方もない進化の時間が必要だった。このことからDNAを媒体とする情報は、外界を記憶するというより、外界の情報(この場合地球の自転のサイクル)を自己に同化していると考えるほうがいい。しかし組み込む過程は不自由で機動性に欠けていても、DNAを情報媒体としてこれまで生物ゲノムに同化された外界の情報はほぼ無限と言ってもいい。

繰り返すが、この同化過程は、情報媒体に起こる偶然の変化に依存しており、外界の変化に素早く反応することは全くできない。例えば、個体の一生と言う時間スケールで情報に合わせて変化したり、あるいは情報を他の個体に伝達することは不可能だ。このことは、大腸菌を特定の栄養成分が欠けた培地に移して変化に適応させる時、ほとんどの個体が死滅する中で、何百万分の1の確率で生き残った個体だけが、次の世代を作るのを見ればよく理解できる。

しかし、個体が外界の変化に適応して生きるためには、素早く外界の変化に適応できる能力の開発が必要なのは明白だ。この問題の解決として、様々なシグナルを使って外界をモニターする方法(例えばクオラムセンシングなど:2016年8月15日 進化研究を覗く)が進化した。ただ、情報の解釈、及び記録の両方を実現できる情報媒体として進化したのは、ヒストンやDNAの修飾により遺伝子の利用を決めるエピジェネティック機構だ。この機構の進化により、外界の変化を受けて、細胞を安定的に外界に適応した状態へとシフトさせることが可能になった。この結果、細胞同士がコミュニケーションすることでそれぞれの分化状態を決めることが要求される多細胞体制も可能になった。

エピジェネティック機構はDNAの書き換えを必要としない。その代わりに、細胞内外の情報に従ってDNA上のヒストンやDNA自身を可逆的に修飾し、遺伝子発現を変化させる。すなわち、ゲノム情報の中の特定の組み合わせだけを機動的にON/OFFできるようにすることで、一種の記憶を可能にしたと言える。実際、原則としてエピジェネティックな情報は次世代に伝達されない。しかし、同じゲノムを共有する個体であれば、同じ外界からの刺激をエピジェネティックな記憶として多くの個体で共有することができる。言い換えると、生殖を通してしか伝達できないゲノム情報を、何通りにも違った使い方をできるようにしたのがエピジェネティックな機構と言える。

ただ、エピジェネティック機構を用いた媒体での情報処理には時間がかかり、迅速性にかける。一方、生物はさらに短い時間スケールの変化に囲まれている。特に、光、音、温度のような物理学的変化は短い時間スケールで変化することが普通だ。そして、これらの変化は生命にかかわることもある。しかし、神経系が発達するまでこのような早い変化に生物はついていくことができなかった。言い換えると、これらの問題の解決として進化したのが神経系と言える。

イオンチャンネルを通るイオンの流れをシグナルとして使うことは神経細胞以前から行われている。分かりやすいのが、ミトコンドリアのATP合成に使われるチャンネルだろう。しかし、電位差によって開閉するチャンネルを使って、細胞の端から端まで順番に活動を伝播させるシステムは神経系が最初だ。この膜電位の脱分極による興奮性は、急に開いたチャンネルを通るイオンの流れなので、刺激に対する秒単位の反応が可能になった。


図2:神経系はすべてのシグナルを、膜の興奮に収束させている

これに加えて、刺激の性質の異なる外界の情報を、細胞膜の興奮という統一した仕組みにいったん収束させることが可能になったことが(図2)、情報媒体としての神経系の特徴だ。この結果、神経系では、物理刺激も、化学刺激も全て同じ興奮原理を持った神経回路に統合して統一された情報として扱うことが可能になった。これにより、あらゆる種類の外界の変化を、迅速に捉え、一つの記憶として維持することができる、まったく新しい情報媒体が出来上がった。

ただ、膜の興奮そのものは、記憶というより、反射に近い。神経細胞内では、この迅速な反応は、短期、長期記憶と呼ばれる二つのメカニズムで持続される(図3)。

図3:短期記憶と長期記憶のメカニズム(ノーベル財団2000年ノーベル医学生理学受賞理由:https://www.nobelprize.org/nobel_prizes/medicine/laureates/2000/press.html) (C) The Nobel Assembly at Karolinska Institute

図3は、エリック・カンデルの研究を紹介したノーベル委員会の受賞理由に掲載されたいた図を拝借したものだ。この図には、神経細胞内でのシグナル伝達系(PKA, cAMPなど)の活性による短期記憶と、エピジェネティックな変化によって誘導される細胞の分化を用いた長期記憶のメカニズムが書かれている。すなわち、神経系の誕生で、これまでシグナル伝達や、細胞分化に関わってきた多くのメカニズムが、新しく誕生した興奮膜を中心に再編成されているのがわかる。


図4:情報媒体の進化の階層性

このように、DNA、エピジェネティック機構、神経と情報媒体の進化を振り返ってみると、新しい媒体が、古い媒体では困難だった様々な課題を解決するとともに、それ以前の情報媒体を、新しい媒体を核に再編成し直して利用していることがよくわかる(図4)。この結果、神経系では、興奮膜の反応時間から、エピジェネティック機構の時間、さらにはゲノムの時間まで統合された独特の時間を形成するのに成功している。

これらの時間は、一個の細胞内の時間で、例えば以前紹介したゴカイ幼生の神経が一本しかない光感受システムにも当てはまることだが、記憶・伝達という観点から見た時、神経系は別の方法でもうひとつの時間過程を形成するのに成功している。すなわち、シナプス形成による神経細胞同士が興奮を伝達できる回路の形成だ。例えばアメフラシの水管反射回路(図5)を思い出してもらいたい。この回路で神経細胞はシナプスで結合している。個々の細胞は刺激に応じて長短合わせた変化を遂げシナプスの興奮性も変化するが、これとは別に回路内では一つの細胞から細胞へと刺激のリレーが行われ、この興奮のリレー自体も回路特有の活動時間を形成している。すなわち、外界からの刺激に対して、細胞やシナプスといった個々のレベルだけでなく、回路全体として反応が起こり、記憶が形成される。

図5 単純なアメフラシの水管反射に関わる回路。(BRHホームページ参照:http://www.brh.co.jp/communication/shinka/2016/post_000024.html

そして、この細胞間のつながりは、ほぼ無限に拡大できることから、私たちが例えばイメージを見たとき、脳の中では恐ろしく複雑な過程が進行し場合により記憶として回路レベル、細胞レベルに分散して残ることが推察できる。

この外界の刺激を認識、記憶する過程の延長に、言語が生まれるのだが、例えば、鳥を見たとき脳で起こっている過程の複雑さを考えると、「トリ」という言葉が刺激として持つ性質は、あまりにも単純に思える。私自身は、このギャップこそが、言語の重要な役割だと思っているので、次回は、さらに高等動物の記憶について整理しながら、言語の役割について考えてみたい。

[ 西川 伸一 ]

進化研究を覗く最新号へ